Frame statistics
| Number of series | 13 |
|---|---|
| Time series length | 129 |
| Start date | 2012-01 |
| End date | 2022-09 |
| Frequency | MS |
| Period | 12 |
| Total size in memory | 14.4 kB |
| Average series size | 1.1 kB |
Frame details
| Description | Beef Incidents |
|---|---|
| Source | not provided |
Time Series
| Incidents | Incidents |
|---|---|
| Above Limit Lab Tests | Above Limit Lab Tests |
| Trade (tonnes) | Trade (tonnes) |
| Production (tonnes) | Production (tonnes) |
| Media Buzz | Media Buzz |
| EU Price | EU Price |
| Risk | |
| Disease Cases | |
| Disease Deaths | Disease Deaths |
| Price VS Mean | Price VS Mean |
| Production VS Mean | Production VS Mean |
| Trade VS Mean | Trade VS Mean |
| Risk Normalized | Risk Normalized |
Execution stats
| Started | 2022-12-14 17:47:27.286076 |
|---|---|
| Ended | 2022-12-14 17:47:31.258179 |
| Duration | 0:00:03.972103 |
| Package | tslumen==0.0.1 |
Configuration details
Incidents
Series details
| Mean | 12.91 |
|---|---|
| Deviation | 18.90 |
| Maximum | 142.00 |
| Minimum | 1.00 |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 4.00 | 6.00 | 5.00 | 2.00 | 11.00 | ... | 4.00 | 3.00 | 11.00 | 10.00 | 9.00 |
Statistics
| Value | |
|---|---|
| Mean | 12.91 |
| Variance | 357.11 |
| Standard deviation | 18.90 |
| Median | 8.00 |
| Median absolute deviation | 3.00 |
| Coefficient of variation | 1.46 |
| Minimum | 1.00 |
| 25% | 5.00 |
| 50% | 8.00 |
| 75% | 12.00 |
| Maximum | 142.00 |
| Interquartile range | 7.00 |
| Kurtosis | 24.97 |
| Skewness | 4.70 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | No | 0.064 | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | Yes | 0.000 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.000 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | No | 0.232 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | No | 0.083 | 0.05 |
Distribution
Main Features
| trend | 0.325 |
|---|---|
| seasonality | 0.169 |
| entropy | 0.878 |
| entropy_acf | 0.702 |
| instability | 0.226 |
| lumpiness | 2.53 |
Stationarity
| kpss(c) | 0.433 |
|---|---|
| kpss(ct) | 0.184 |
| adfuller(c) | 0.232 |
| adfuller(ct) | 0.534 |
| adfuller(ctt) | 0.651 |
| adfuller(nc) | 0.209 |
ACF/PACF
| acf1(d=0) | 0.122 |
|---|---|
| acf1(d=1) | -0.618 |
| acf1(d=2) | -0.760 |
| acf10(d=0) | 0.455 |
| acf10(d=1) | 0.955 |
| acf10(d=2) | 1.34 |
| pacf5(d=0) | 0.234 |
| pacf5(d=1) | 0.637 |
| pacf5(d=2) | 1.12 |
| acf1(error) | -0.195 |
| acf10(error) | 0.295 |
| acf(season) | 0.145 |
| pacf(season) | -0.149 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Above Limit Lab Tests
Series details
| Mean | 5.98 |
|---|---|
| Deviation | 44.41 |
| Maximum | 505.00 |
| Minimum | 0 |
| Zeros | 94 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 |
Statistics
| Value | |
|---|---|
| Mean | 5.98 |
| Variance | 1.97k |
| Standard deviation | 44.41 |
| Median | 0 |
| Median absolute deviation | 0 |
| Coefficient of variation | 7.42 |
| Minimum | 0 |
| 25% | 0 |
| 50% | 0 |
| 75% | 1.00 |
| Maximum | 505.00 |
| Interquartile range | 1.00 |
| Kurtosis | 120.62 |
| Skewness | 11.00 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | No | 0.274 | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | No | 0.806 | 0.05 |
| Jarque Bera | Data is normally distributed | Yes | 0.000 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.000 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | Yes | 0.000 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | No | 0.100 | 0.05 |
Distribution
Main Features
| trend | 0.142 |
|---|---|
| seasonality | 0.103 |
| entropy | 0.996 |
| entropy_acf | 0.566 |
| instability | 0.150 |
| lumpiness | 10.24 |
Stationarity
| kpss(c) | 0.113 |
|---|---|
| kpss(ct) | 0.112 |
| adfuller(c) | 0 |
| adfuller(ct) | 0 |
| adfuller(ctt) | 0 |
| adfuller(nc) | 0 |
ACF/PACF
| acf1(d=0) | 0.00955 |
|---|---|
| acf1(d=1) | -0.524 |
| acf1(d=2) | -0.686 |
| acf10(d=0) | 0.00555 |
| acf10(d=1) | 0.278 |
| acf10(d=2) | 0.518 |
| pacf5(d=0) | 0.00398 |
| pacf5(d=1) | 0.493 |
| pacf5(d=2) | 1.06 |
| acf1(error) | -0.136 |
| acf10(error) | 0.0573 |
| acf(season) | -0.0121 |
| pacf(season) | -0.0135 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Trade (tonnes)
Series details
| Mean | 489.69k |
|---|---|
| Deviation | 10.47k |
| Maximum | 498.82k |
| Minimum | 468.50k |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 489.99k | 489.99k | 489.99k | 489.99k | 489.99k | ... | 498.82k | 498.82k | 498.82k | 498.82k | 498.82k |
Statistics
| Value | |
|---|---|
| Mean | 489.69k |
| Variance | 109.53m |
| Standard deviation | 10.47k |
| Median | 493.89k |
| Median absolute deviation | 4.93k |
| Coefficient of variation | 0.0214 |
| Minimum | 468.50k |
| 25% | 481.21k |
| 50% | 493.89k |
| 75% | 498.82k |
| Maximum | 498.82k |
| Interquartile range | 17.61k |
| Kurtosis | -0.708 |
| Skewness | -0.818 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | No | nan | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | Yes | 0.000 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.000 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | No | 0.350 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | Yes | 0.010 | 0.05 |
Distribution
Main Features
| trend | 0.877 |
|---|---|
| seasonality | 0.0274 |
| entropy | 0.443 |
| entropy_acf | 0.271 |
| instability | 1.12 |
| lumpiness | 0 |
Stationarity
| kpss(c) | 1.28 |
|---|---|
| kpss(ct) | 0.144 |
| adfuller(c) | 0.350 |
| adfuller(ct) | 0.230 |
| adfuller(ctt) | 0.513 |
| adfuller(nc) | 0.740 |
ACF/PACF
| acf1(d=0) | 0.938 |
|---|---|
| acf1(d=1) | -0.000368 |
| acf1(d=2) | -0.500 |
| acf10(d=0) | 4.66 |
| acf10(d=1) | 0.00000145 |
| acf10(d=2) | 0.250 |
| pacf5(d=0) | 0.884 |
| pacf5(d=1) | 0.00000070 |
| pacf5(d=2) | 0.491 |
| acf1(error) | 0.575 |
| acf10(error) | 0.556 |
| acf(season) | 0.256 |
| pacf(season) | -0.0471 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Production (tonnes)
Series details
| Mean | 308.09m |
|---|---|
| Deviation | 9.88m |
| Maximum | 319.40m |
| Minimum | 293.74m |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 293.74m | 293.74m | 293.74m | 293.74m | 293.74m | ... | 319.40m | 319.40m | 319.40m | 319.40m | 319.40m |
Statistics
| Value | |
|---|---|
| Mean | 308.09m |
| Variance | 97.65t |
| Standard deviation | 9.88m |
| Median | 307.51m |
| Median absolute deviation | 9.71m |
| Coefficient of variation | 0.0321 |
| Minimum | 293.74m |
| 25% | 298.51m |
| 50% | 307.51m |
| 75% | 319.40m |
| Maximum | 319.40m |
| Interquartile range | 20.89m |
| Kurtosis | -1.70 |
| Skewness | 0.00454 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | No | nan | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | Yes | 0.000 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.000 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | No | 0.722 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | Yes | 0.010 | 0.05 |
Distribution
Main Features
| trend | 0.994 |
|---|---|
| seasonality | 0.480 |
| entropy | 0.200 |
| entropy_acf | 0.109 |
| instability | 1.07 |
| lumpiness | 0 |
Stationarity
| kpss(c) | 2.55 |
|---|---|
| kpss(ct) | 0.271 |
| adfuller(c) | 0.722 |
| adfuller(ct) | 0.295 |
| adfuller(ctt) | 0.623 |
| adfuller(nc) | 0.856 |
ACF/PACF
| acf1(d=0) | 0.981 |
|---|---|
| acf1(d=1) | -0.0364 |
| acf1(d=2) | -0.500 |
| acf10(d=0) | 8.04 |
| acf10(d=1) | 0.0142 |
| acf10(d=2) | 0.250 |
| pacf5(d=0) | 0.963 |
| pacf5(d=1) | 0.00805 |
| pacf5(d=2) | 0.491 |
| acf1(error) | 0.545 |
| acf10(error) | 0.832 |
| acf(season) | 0.771 |
| pacf(season) | -0.0107 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Media Buzz
Series details
| Mean | 13.67 |
|---|---|
| Deviation | 7.10 |
| Maximum | 34.00 |
| Minimum | 2.00 |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 14.00 | 8.00 | 11.00 | 22.00 | 23.00 | ... | 17.00 | 29.00 | 14.00 | 20.00 | 6.00 |
Statistics
| Value | |
|---|---|
| Mean | 13.67 |
| Variance | 50.39 |
| Standard deviation | 7.10 |
| Median | 13.00 |
| Median absolute deviation | 5.00 |
| Coefficient of variation | 0.519 |
| Minimum | 2.00 |
| 25% | 8.00 |
| 50% | 13.00 |
| 75% | 18.00 |
| Maximum | 34.00 |
| Interquartile range | 10.00 |
| Kurtosis | -0.296 |
| Skewness | 0.594 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | Yes | 0.001 | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | Yes | 0.018 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.022 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | Yes | 0.003 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | Yes | 0.010 | 0.05 |
Distribution
Main Features
| trend | 0.612 |
|---|---|
| seasonality | 0.339 |
| entropy | 0.821 |
| entropy_acf | 0.563 |
| instability | 0.398 |
| lumpiness | 0.229 |
Stationarity
| kpss(c) | 0.933 |
|---|---|
| kpss(ct) | 0.263 |
| adfuller(c) | 0.00344 |
| adfuller(ct) | 0.00474 |
| adfuller(ctt) | 0.00228 |
| adfuller(nc) | 0.250 |
ACF/PACF
| acf1(d=0) | 0.568 |
|---|---|
| acf1(d=1) | -0.442 |
| acf1(d=2) | -0.682 |
| acf10(d=0) | 1.38 |
| acf10(d=1) | 0.334 |
| acf10(d=2) | 0.671 |
| pacf5(d=0) | 0.463 |
| pacf5(d=1) | 0.273 |
| pacf5(d=2) | 0.813 |
| acf1(error) | 0.0115 |
| acf10(error) | 0.124 |
| acf(season) | 0.320 |
| pacf(season) | 0.155 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
EU Price
Series details
| Mean | 374.76 |
|---|---|
| Deviation | 11.93 |
| Maximum | 398.93 |
| Minimum | 347.91 |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 382.72 | 383.99 | 384.36 | 381.14 | 380.79 | ... | 368.62 | 368.62 | 368.62 | 368.62 | 368.62 |
Statistics
| Value | |
|---|---|
| Mean | 374.76 |
| Variance | 142.35 |
| Standard deviation | 11.93 |
| Median | 373.59 |
| Median absolute deviation | 8.02 |
| Coefficient of variation | 0.0318 |
| Minimum | 347.91 |
| 25% | 368.62 |
| 50% | 373.59 |
| 75% | 383.97 |
| Maximum | 398.93 |
| Interquartile range | 15.35 |
| Kurtosis | -0.542 |
| Skewness | -0.0664 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | Yes | 0.005 | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | No | 0.434 | 0.05 |
| Omnibus | Data is normally distributed | No | 0.319 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | No | 0.239 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | Yes | 0.010 | 0.05 |
Distribution
Main Features
| trend | 0.907 |
|---|---|
| seasonality | 0.552 |
| entropy | 0.562 |
| entropy_acf | 0.322 |
| instability | 0.841 |
| lumpiness | 0.0464 |
Stationarity
| kpss(c) | 1.42 |
|---|---|
| kpss(ct) | 0.0798 |
| adfuller(c) | 0.239 |
| adfuller(ct) | 0.0669 |
| adfuller(ctt) | 0.0935 |
| adfuller(nc) | 0.566 |
ACF/PACF
| acf1(d=0) | 0.955 |
|---|---|
| acf1(d=1) | 0.497 |
| acf1(d=2) | -0.189 |
| acf10(d=0) | 3.95 |
| acf10(d=1) | 0.619 |
| acf10(d=2) | 0.171 |
| pacf5(d=0) | 1.21 |
| pacf5(d=1) | 0.341 |
| pacf5(d=2) | 0.163 |
| acf1(error) | 0.777 |
| acf10(error) | 1.16 |
| acf(season) | 0.383 |
| pacf(season) | -0.141 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Risk
Series details
| Mean | 297.71 |
|---|---|
| Deviation | 320.74 |
| Maximum | 1.70k |
| Minimum | 25.20 |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 282.50 | 290.10 | 292.30 | 273.20 | 271.10 | ... | 79.00 | 79.00 | 79.00 | 79.00 | 79.00 |
Statistics
| Value | |
|---|---|
| Mean | 297.71 |
| Variance | 102.88k |
| Standard deviation | 320.74 |
| Median | 201.30 |
| Median absolute deviation | 122.30 |
| Coefficient of variation | 1.08 |
| Minimum | 25.20 |
| 25% | 79.00 |
| 50% | 201.30 |
| 75% | 346.10 |
| Maximum | 1.70k |
| Interquartile range | 267.10 |
| Kurtosis | 4.51 |
| Skewness | 2.15 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | Yes | 0.000 | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | Yes | 0.000 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.000 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | No | 0.059 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | No | 0.100 | 0.05 |
Distribution
Main Features
| trend | 0.734 |
|---|---|
| seasonality | 0.119 |
| entropy | 0.726 |
| entropy_acf | 0.231 |
| instability | 0.893 |
| lumpiness | 0.219 |
Stationarity
| kpss(c) | 0.264 |
|---|---|
| kpss(ct) | 0.262 |
| adfuller(c) | 0.0595 |
| adfuller(ct) | 0.196 |
| adfuller(ctt) | 0.220 |
| adfuller(nc) | 0.0385 |
ACF/PACF
| acf1(d=0) | 0.770 |
|---|---|
| acf1(d=1) | -0.358 |
| acf1(d=2) | -0.640 |
| acf10(d=0) | 2.64 |
| acf10(d=1) | 0.133 |
| acf10(d=2) | 0.445 |
| pacf5(d=0) | 0.671 |
| pacf5(d=1) | 0.151 |
| pacf5(d=2) | 0.796 |
| acf1(error) | 0.212 |
| acf10(error) | 0.110 |
| acf(season) | 0.175 |
| pacf(season) | 0.101 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Disease Cases
Series details
| Mean | 524.67k |
|---|---|
| Deviation | 336.74k |
| Maximum | 1.05m |
| Minimum | 1.05k |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1,012.76k | 1,012.76k | 1,012.76k | 1,012.76k | 1,012.76k | ... | 3.18k | 3.18k | 3.18k | 3.18k | 3.18k |
Statistics
| Value | |
|---|---|
| Mean | 524.67k |
| Variance | 113.40b |
| Standard deviation | 336.74k |
| Median | 646.44k |
| Median absolute deviation | 116.50k |
| Coefficient of variation | 0.642 |
| Minimum | 1.05k |
| 25% | 16.07k |
| 50% | 646.44k |
| 75% | 747.25k |
| Maximum | 1.05m |
| Interquartile range | 731.18k |
| Kurtosis | -0.990 |
| Skewness | -0.531 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | Yes | 0.000 | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | Yes | 0.003 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.000 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | No | 0.771 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | Yes | 0.010 | 0.05 |
Distribution
Main Features
| trend | 0.967 |
|---|---|
| seasonality | 0.0864 |
| entropy | 0.381 |
| entropy_acf | 0.177 |
| instability | 0.942 |
| lumpiness | 0.00161 |
Stationarity
| kpss(c) | 2.10 |
|---|---|
| kpss(ct) | 0.372 |
| adfuller(c) | 0.771 |
| adfuller(ct) | 0.566 |
| adfuller(ctt) | 0.632 |
| adfuller(nc) | 0.0762 |
ACF/PACF
| acf1(d=0) | 0.966 |
|---|---|
| acf1(d=1) | -0.0169 |
| acf1(d=2) | -0.500 |
| acf10(d=0) | 6.71 |
| acf10(d=1) | 0.00642 |
| acf10(d=2) | 0.252 |
| pacf5(d=0) | 0.935 |
| pacf5(d=1) | 0.00159 |
| pacf5(d=2) | 0.481 |
| acf1(error) | 0.592 |
| acf10(error) | 0.862 |
| acf(season) | 0.593 |
| pacf(season) | -0.0209 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Disease Deaths
Series details
| Mean | 12.51k |
|---|---|
| Deviation | 8.29k |
| Maximum | 28.32k |
| Minimum | 29.00 |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 21.80k | 21.80k | 21.80k | 21.80k | 21.80k | ... | 1.41k | 1.41k | 1.41k | 1.41k | 1.41k |
Statistics
| Value | |
|---|---|
| Mean | 12.51k |
| Variance | 68.68m |
| Standard deviation | 8.29k |
| Median | 12.36k |
| Median absolute deviation | 5.11k |
| Coefficient of variation | 0.662 |
| Minimum | 29.00 |
| 25% | 1.41k |
| 50% | 12.36k |
| 75% | 17.46k |
| Maximum | 28.32k |
| Interquartile range | 16.06k |
| Kurtosis | -1.01 |
| Skewness | -0.0692 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | Yes | 0.000 | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | No | 0.061 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.000 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | No | 0.477 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | Yes | 0.010 | 0.05 |
Distribution
Main Features
| trend | 0.906 |
|---|---|
| seasonality | 0.0759 |
| entropy | 0.669 |
| entropy_acf | 0.167 |
| instability | 0.914 |
| lumpiness | 0.0324 |
Stationarity
| kpss(c) | 1.76 |
|---|---|
| kpss(ct) | 0.174 |
| adfuller(c) | 0.477 |
| adfuller(ct) | 0.225 |
| adfuller(ctt) | 0.391 |
| adfuller(nc) | 0.126 |
ACF/PACF
| acf1(d=0) | 0.944 |
|---|---|
| acf1(d=1) | -0.00421 |
| acf1(d=2) | -0.500 |
| acf10(d=0) | 5.33 |
| acf10(d=1) | 0.0594 |
| acf10(d=2) | 0.336 |
| pacf5(d=0) | 0.895 |
| pacf5(d=1) | 0.0000928 |
| pacf5(d=2) | 0.465 |
| acf1(error) | 0.598 |
| acf10(error) | 0.824 |
| acf(season) | 0.485 |
| pacf(season) | -0.0233 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Price VS Mean
Series details
| Mean | 4.82 |
|---|---|
| Deviation | 3.92 |
| Maximum | 18.55 |
| Minimum | 0 |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 5.10 | 3.83 | 3.46 | 6.68 | 7.03 | ... | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Statistics
| Value | |
|---|---|
| Mean | 4.82 |
| Variance | 15.33 |
| Standard deviation | 3.92 |
| Median | 4.50 |
| Median absolute deviation | 2.55 |
| Coefficient of variation | 0.812 |
| Minimum | 0 |
| 25% | 1.54 |
| 50% | 4.50 |
| 75% | 6.55 |
| Maximum | 18.55 |
| Interquartile range | 5.01 |
| Kurtosis | 0.764 |
| Skewness | 0.885 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | Yes | 0.011 | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | Yes | 0.000 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.000 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | No | 0.113 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | Yes | 0.022 | 0.05 |
Distribution
Main Features
| trend | 0.447 |
|---|---|
| seasonality | 0.228 |
| entropy | 0.882 |
| entropy_acf | 0.621 |
| instability | 0.352 |
| lumpiness | 0.242 |
Stationarity
| kpss(c) | 0.610 |
|---|---|
| kpss(ct) | 0.186 |
| adfuller(c) | 0.113 |
| adfuller(ct) | 0.118 |
| adfuller(ctt) | 0.134 |
| adfuller(nc) | 0.130 |
ACF/PACF
| acf1(d=0) | 0.592 |
|---|---|
| acf1(d=1) | -0.00825 |
| acf1(d=2) | -0.340 |
| acf10(d=0) | 0.711 |
| acf10(d=1) | 0.291 |
| acf10(d=2) | 0.195 |
| pacf5(d=0) | 0.498 |
| pacf5(d=1) | 0.330 |
| pacf5(d=2) | 0.629 |
| acf1(error) | 0.330 |
| acf10(error) | 0.455 |
| acf(season) | 0.0660 |
| pacf(season) | -0.139 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Production VS Mean
Series details
| Mean | 9.25m |
|---|---|
| Deviation | 3.47m |
| Maximum | 14.34m |
| Minimum | 574.22k |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 14.34m | 14.34m | 14.34m | 14.34m | 14.34m | ... | 11.31m | 11.31m | 11.31m | 11.31m | 11.31m |
Statistics
| Value | |
|---|---|
| Mean | 9.25m |
| Variance | 12.04t |
| Standard deviation | 3.47m |
| Median | 10.29m |
| Median absolute deviation | 1.03m |
| Coefficient of variation | 0.375 |
| Minimum | 574.22k |
| 25% | 7.30m |
| 50% | 10.29m |
| 75% | 11.31m |
| Maximum | 14.34m |
| Interquartile range | 4.01m |
| Kurtosis | 1.15 |
| Skewness | -1.14 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | No | nan | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | Yes | 0.000 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.000 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | No | 0.318 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | No | 0.100 | 0.05 |
Distribution
Main Features
| trend | 0.923 |
|---|---|
| seasonality | 0.126 |
| entropy | 0.488 |
| entropy_acf | 0.156 |
| instability | 1.15 |
| lumpiness | 0 |
Stationarity
| kpss(c) | 0.461 |
|---|---|
| kpss(ct) | 0.462 |
| adfuller(c) | 0.318 |
| adfuller(ct) | 0.645 |
| adfuller(ctt) | 0.766 |
| adfuller(nc) | 0.319 |
ACF/PACF
| acf1(d=0) | 0.948 |
|---|---|
| acf1(d=1) | -0.000553 |
| acf1(d=2) | -0.500 |
| acf10(d=0) | 5.34 |
| acf10(d=1) | 0.00000328 |
| acf10(d=2) | 0.250 |
| pacf5(d=0) | 0.902 |
| pacf5(d=1) | 0.00000158 |
| pacf5(d=2) | 0.491 |
| acf1(error) | 0.562 |
| acf10(error) | 0.588 |
| acf(season) | 0.379 |
| pacf(season) | -0.0362 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Trade VS Mean
Series details
| Mean | 8.90k |
|---|---|
| Deviation | 5.51k |
| Maximum | 21.19k |
| Minimum | 297.28 |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0.30k | 0.30k | 0.30k | 0.30k | 0.30k | ... | 9.12k | 9.12k | 9.12k | 9.12k | 9.12k |
Statistics
| Value | |
|---|---|
| Mean | 8.90k |
| Variance | 30.34m |
| Standard deviation | 5.51k |
| Median | 9.12k |
| Median absolute deviation | 642.56 |
| Coefficient of variation | 0.619 |
| Minimum | 297.28 |
| 25% | 4.19k |
| 50% | 9.12k |
| 75% | 9.12k |
| Maximum | 21.19k |
| Interquartile range | 4.93k |
| Kurtosis | 0.222 |
| Skewness | 0.645 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | No | nan | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | Yes | 0.010 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.010 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | Yes | 0.047 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | No | 0.100 | 0.05 |
Distribution
Main Features
| trend | 0.750 |
|---|---|
| seasonality | 0.0431 |
| entropy | 0.582 |
| entropy_acf | 0.388 |
| instability | 1.19 |
| lumpiness | 0 |
Stationarity
| kpss(c) | 0.0758 |
|---|---|
| kpss(ct) | 0.0579 |
| adfuller(c) | 0.0466 |
| adfuller(ct) | 0.195 |
| adfuller(ctt) | 0.455 |
| adfuller(nc) | 0.242 |
ACF/PACF
| acf1(d=0) | 0.872 |
|---|---|
| acf1(d=1) | -0.000659 |
| acf1(d=2) | -0.500 |
| acf10(d=0) | 2.22 |
| acf10(d=1) | 0.00000465 |
| acf10(d=2) | 0.250 |
| pacf5(d=0) | 0.783 |
| pacf5(d=1) | 0.00000224 |
| pacf5(d=2) | 0.491 |
| acf1(error) | 0.579 |
| acf10(error) | 0.571 |
| acf(season) | -0.542 |
| pacf(season) | -0.219 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Risk Normalized
Series details
| Mean | 176.30 |
|---|---|
| Deviation | 167.38 |
| Maximum | 765.50 |
| Minimum | 13.30 |
| Zeros | 0 |
| Missing | 0 |
| Infinites | 0 |
Sample
| 2012-01 | 2012-02 | 2012-03 | 2012-04 | 2012-05 | ... | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| 207.50 | 180.40 | 172.50 | 241.10 | 248.60 | ... | 13.30 | 13.30 | 13.30 | 13.30 | 13.30 |
Statistics
| Value | |
|---|---|
| Mean | 176.30 |
| Variance | 28.02k |
| Standard deviation | 167.38 |
| Median | 128.60 |
| Median absolute deviation | 100.80 |
| Coefficient of variation | 0.949 |
| Minimum | 13.30 |
| 25% | 42.40 |
| 50% | 128.60 |
| 75% | 248.60 |
| Maximum | 765.50 |
| Interquartile range | 206.20 |
| Kurtosis | 1.49 |
| Skewness | 1.34 |
Statistical Tests
| Test | Null Hypothesis | Reject | pvalue | Confidence |
|---|---|---|---|---|
| Levene | Variance is constant between 10 groups | Yes | 0.000 | 0.05 |
| Ljung-Box | No autocorrelation among specified lag(22) | Yes | 0.000 | 0.05 |
| Jarque Bera | Data is normally distributed | Yes | 0.000 | 0.05 |
| Omnibus | Data is normally distributed | Yes | 0.000 | 0.05 |
| Augmented Dickey-Fuller | Data has unit root | No | 0.246 | 0.05 |
| Kwiatkowski-Phillips-Schmidt-Shin | Data is level stationary | Yes | 0.010 | 0.05 |
Distribution
Main Features
| trend | 0.810 |
|---|---|
| seasonality | 0.268 |
| entropy | 0.717 |
| entropy_acf | 0.271 |
| instability | 0.856 |
| lumpiness | 0.0627 |
Stationarity
| kpss(c) | 1.26 |
|---|---|
| kpss(ct) | 0.0700 |
| adfuller(c) | 0.246 |
| adfuller(ct) | 0.00159 |
| adfuller(ctt) | 0.00788 |
| adfuller(nc) | 0.152 |
ACF/PACF
| acf1(d=0) | 0.843 |
|---|---|
| acf1(d=1) | -0.0534 |
| acf1(d=2) | -0.431 |
| acf10(d=0) | 3.24 |
| acf10(d=1) | 0.167 |
| acf10(d=2) | 0.240 |
| pacf5(d=0) | 0.774 |
| pacf5(d=1) | 0.125 |
| pacf5(d=2) | 0.650 |
| acf1(error) | 0.422 |
| acf10(error) | 0.273 |
| acf(season) | 0.181 |
| pacf(season) | -0.135 |
Time Series Decomposition
Auto Correlation
Lag Plots
Seasonality plots
Smoothing
Pearson Correlations
Granger Causality Matrix
Critical value 0.05.
Data differenced 2 times to try to achieve stationarity.
Granger Causality Graph
Critical value 0.05.
Data differenced 2 times to try to achieve stationarity.
Highlighted are the strongest granger-causality (lowest p-value) relationship of any given target variable.
Report generated in 0:00:20.705953 • tslumen